The Working Of Cardiac Elisa Kits

By Sally Delacruz


Advancement in medical technology has brought new ways of detecting heart diseases in the human body. This is through the use of cardiac Elisa kits. These are diagnostic tools that work with samples and reagents in determining the existence of problems in the heart. This is done through looking out for color change in the reagents.

This experiment works when the enzyme immunoassay binds with antibodies and substrate. When this occurs, color changes to indicate presence or absence of trouble. With these tools, it is possible to work with both antibodies and antigens. The amount of both of them can be determined by observing the color changes.

This test can also be used in detecting foreign bodies that exist in low concentrations. Heart problems can, therefore, be identified before they become chronic. The patient is advantaged; he will spend less money fighting a developing problem than he would have spent on a chronic one. This is because it is cheaper treating a disease while still in its early stages than when it has developed into a complex illness.

For proper working of these devices precision, sensitivity, accuracy and ability to work on a wide range of problems, and give many details are very important. Sensitivity helps in detecting any slight change in reaction when they are mixed with the samples. Accuracy, on the other hand, is required in ensuring that no errors are made in the experiments. The devices are also supposed to be specific to individual heart problems.

It is also important that the instruments are made in a way that makes them stable. To attain stability, one must cut down on the rate loss of these activities. This is possible through proper storage. Stability can also be achieved through minimizing the effects of the surrounding on the set-up. This means temperature, humidity and pressure have to agree with the standard lab requirements. There should be somebody to control incubator temperatures. If only one person is allowed to work on the research from beginning to end, it will be easy to achieve stability.

For this experiment to work, one needs to prepare all samples, standards and reagents. He/she should then add a small amount of the sample to every well and then incubate for about two hours. After this, he should aspire then add some reagent and again incubate for about an hour. After this, he must aspire the mixture and wash it three times. The next step is addition of substrate solutions and then incubating for another 20 to 25 minutes. The last step is addition of stop solution and making readings.

This process applies the sandwich enzyme principle. The plate that comes with the kit is coated with antibodies that are specific to the defect to be diagnosed. Standards/samples are later put on the plate as is appropriate. The samples or standards contain biotin-conjugate antibodies that are specific for the defect. Avidin conjugate is then added to every plate before incubating.

After putting substrate solutions together with other reagents, only the micro-wells will have Tropin I type three. A color change will then be exhibited, and a stopper solution is added. The change in color is then measured using wavelengths.




About the Author: